一级大片免费_成人免费观看在线_国产一区二区三区精品久久久无广告_久久99精品久久久久久青青91_com.黄_久久久久久久国产免费看

position: EnglishChannel  > InnovationChina> China's SHMFF Breaks Records and Pushes Boundaries

China's SHMFF Breaks Records and Pushes Boundaries

Source: | 2024-04-23 14:55:18 | Author:

?

The Steady High Magnetic Field Facility in central China's Hefei, Anhui Province. (PHOTO: VCG)

By HONG Jingpu, WU Changfeng & LIANG Yilian

Researchers have taken a giant leap forward in their research under high magnetic fields. Made possible by a recent collaboration between the High Magnetic Field Laboratory, Hefei Institutes of Physical Science (HFIPS), under the Chinese Academy of Sciences, and the University of Science and Technology of China, the research relied heavily on China’s Steady High Magnetic Field Facility (SHMFF). The researchers proposed the concept of Topological Kerr Effect, and the results were published online on April 4, 2024 in Nature Physics.

This accomplishment stands as another testament to the capabilities of SHMFF. But what exactly is SHMFF, and what challenges did it confront during its construction?

Cutting-edge research platform

A high magnetic field is an essential extreme experimental condition for frontier scientific research. When a substance is in a high magnetic field, its internal structure may change, thus showing new physical and chemical characteristics. The application of a high magnetic field covers material science, physics, chemistry, and life science, etc. Usually, the higher the magnetic field, the more the opportunities to new discoveries. According to its duration, the high magnetic field is divided into pulsed and steady-state high magnetic fields. The steady-state high magnetic field can be made to remain stable for the time and value needed by the scientific experiments.

SHMFF consists of 10 magnets, including five water-cooled magnets, four superconducting magnets and one hybrid magnet. In August 2022, Chinese scientists produced a steady field of 452,200 gauss, or 45.22 Tesla, beating the previous world record set nearly 23 years ago to become the highest steady magnetic field by a working magnet.

"As the fifth steady-state high magnetic field experimental device in the world, and the first in China, it provides a cutting-edge research platform for researchers," said Kuang Guangli, academic director of the laboratory.

Unique challenges

Constructing such a groundbreaking facility wasn’t without its challenges. "The water-cooled magnets in SHMFF are made with specially designed 'bitter discs," said Zhang Jun, deputy director of the science and technology department of the laboratory.

The bitter disc is densely covered with tiny holes to allow deionized cooling water to flow through it. Therefore, it must be accurately placed, otherwise the blockage of the cooling hole will cause the water-cooled magnet to fail to dissipate heat in time, which is easy to cause the entire magnet to burn, according to Zhang.

"To figure out what materials to use and how much aperture to open, we had to carry out theoretical analysis and simulation, and then start construction," said Fang Zhen, a researcher in the laboratory recalled the challenges during formation process.

One example is that the required "copper-silver alloy" material was extremely scarce at that time, and much effort was used to obtain this material.

"Every step was difficult, and the development of the measurement system was even more so," said Kuang. "To achieve the ability to sift out weak useful information from the complex electromagnetic environment in which the magnet operates, is like looking for a needle in a haystack."

Open to the world

Over the past 100 years, more than 10 Nobel Prizes have been awarded for the researches related to high magnetic fields. Besides China, the United States, France, the Netherlands and Japan have built steady-state high magnetic field experimental devices.

"Researchers from about 70 institutions with more than 100 projects carried out their experiments here every year, from 8 am to 12 pm," said Xi Chuanying, deputy director of Operation and Experimental Measurement Department of the laboratory.

SHMFF is open to scientists worldwide. By the end of 2023, it had provided over 200 scientific and educational institutions at home and abroad with the experimental conditions for cutting-edge research in multiple disciplines, including physics, chemistry, materials, life sciences and engineering, helping to produce nearly 2,500 research papers.

Editor:梁依蓮

Top News

Jointly Protecting People's Rights in Digital Era

?Emerging technologies like AI, big data and the Internet of Things are rapidly reshaping the world in this era of digital intelligence. However, they are also bringing challenges to human rights, which makes joint efforts essential. Science and Technology Daily spoke with international experts on these issues against the backdrop of the 2025 China-Europe Seminar on Human Rights hosted by the China Society for Human Rights Studies and Cátedra China Foundation in Madrid, Spain, on June 25 on the theme "Human Rights in the Era of Digital Intelligence."

First Human Clinical Trial of Invasive BCI in China

A major breakthrough in neurotechnology has been achieved with the successful completion of China's first-in-human clinical trial of an invasive brain-computer interface (BCI) system. With that China becomes the second country in the world to reach the clinical stage in this field.

抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會影響您正常瀏覽本網頁

您可以進行以下操作:

1.將瀏覽器切換回極速模式

2.點擊下面圖標升級或更換您的瀏覽器

3.暫不升級,繼續瀏覽

繼續瀏覽
主站蜘蛛池模板: chinese国产丰满麻豆 | 少妇裸体淫交视频 | 一级特黄网站 | 9久精品| 全免费a级毛片免费看视频免费下 | 九色视频网 | 国产成人亚洲精品欧美一本区 | 国产精品一区二区久久精品爱微奶 | 大地资源高清在线 | 六月激情婷婷 | 日本三级全黄三级a | 精品亚洲国产成av人片传媒 | 国产在线二区 | 日产精品久久久一区二区开放时间 | 成人国产精品一区二区 | 日韩一级大片 | 在线播放国产视频 | 国产传媒在线视频 | 91老司机福利 | 欧美日韩播放 | 欧美国产一二区 | 黄石第五季9至14集 精品日韩在线视频 | 欧美一区二区三区久久 | 青青草精品 | 性伦欧美刺激片在线观看 | 复仇者联盟4免费版高清在线观看 | 久久精品国产一区二区三区日韩 | 91色视频在线导航 | 久久性视频 | 久插视频| 视频一区二区三区在线 | 少妇毛片一区二区三区 | 国产一区二区麻豆 | 黄瓜视频成人在线观看 | 久操视频免费观看 | 1234区中文字幕在线观看 | 日本免费三片免费观看 | 久久亚洲愉拍国产自367391 | 午夜精品久久久99热使用方法 | 一区二区在线播放视频 | 一级全黄毛片 |